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Abstract. The huge amount of data generated by sensor networks en-
ables many potential analyses. However, one important limiting factor for
the analyses of sensor data is the possible presence of anomalies, which
may affect the validity of any conclusion we could draw. This aspect mo-
tivates the adoption of a preliminary anomaly detection method. Existing
methods usually do not consider the spatial nature of data generated by
sensor networks. Properly modeling the spatial nature of the data, by ex-
plicitly considering spatial autocorrelation phenomena, has the potential
to highlight the degree of agreement or disagreement of multiple sensor
measurements located in different geographical positions. The intuition
is that one could improve anomaly detection performance by considering
the spatial context. In this paper, we propose a spatially-aware anomaly
detection method based on a stacked auto-encoder architecture. Specif-
ically, the proposed architecture includes a specific encoding stage that
models the spatial autocorrelation in data observed at different locations.
Finally, a distance-based approach leverages the embedding features re-
turned by the auto-encoder to identify possible anomalies. Our experi-
mental evaluation on real-world geo-distributed data collected from re-
newable energy plants shows the effectiveness of the proposed method,
also when compared to state-of-the-art anomaly detection methods.
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1 Introduction

The increasing adoption of sensor networks leads to the generation of a large
amount of data, that could fruitfully be analyzed to support decision-making pro-
cesses in multiple real-world sectors. Machine learning and data mining methods
for the analysis of data generated by sensor networks have been adopted in mul-
tiple application domains. However, it is noteworthy that data collected through
sensor networks are inherently affected by anomalies. This is due to the nature
of the sensors, which operate in an external environment, and to the nature of
the network (grid), which can be subject to communication issues. Therefore,
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directly using raw sensor data to solve the task at hand may result in a degraded
accuracy of the models [10]. For this reason, incorporating preliminary anomaly
detection phases in the data analysis workflow appears fundamental. Recently,
this thread has attracted increasing interest, with emerging approaches tailored
for specific representations and for the detection of specific anomalies [19].

Sensor networks also open to the possibility to collect observations for a set
of properties of interest in multiple geographical locations. In the literature, sta-
tistical techniques have been investigated to analyze geo-distributed sensor data
in a combined manner, trying to improve the performance of the learning mod-
els. For instance, the incorporation of statistical indicators of spatio-temporal
autocorrelation in classical machine learning algorithms has been successfully
investigated in [8, 17]. However, this opportunity has been often disregarded by
recent anomaly detection approaches, often based on deep neural network archi-
tectures [19]. The goal of this paper is to fill this gap. Specifically, we propose
a method to solve unsupervised anomaly detection tasks, where the considered
anomalies are contextual [9, 10]. More in detail, anomalies are detected on a single
geographic position on the basis of the multi-dimensional sensor data observed
at that location and its neighboring locations (diffused context [9, 10]).

Methodologically, we propose a neural network architecture, based on stacked
auto-encoders, that incorporates a specific spatial encoding component to cap-
ture spatial autocorrelation phenomena. We argue that capturing the agreement
(or disagreement) of the measurement of the same physical property, at the same
time point, in multiple locations may boost the anomaly detection accuracy of
the model. The adoption of stacked auto-encoders in our method is motivated
by their ability to learn non-linear representations that effectively incorporate
salient features [7]. The hidden layers of the model architecture are usually chosen
to have a reduced number of neurons, compared to the input layer, representing
data with a reduced dimensionality.

Auto-encoders have already been exploited to solve anomaly detection tasks
in [3, 20], mainly leveraging the reconstruction error. A popular approach is to
train the auto-encoder on background data, which is assumed to belong to the
normal class (i.e., without anomalies). After the training stage, new instances fed
to the model are expected to exhibit a low reconstruction error if they belong
to the normal class. On the contrary, anomalies are expected to show a high
reconstruction error, due to the fact that they belong to a different distribution.

Although this approach appears relatively intuitive, i) it does not take into
account the spatial dimension in the data for the identification of the anomalies
and ii) it might be susceptible to noise introduced in the data. Both these aspects
are typical of data generated by sensor networks and the analysis of such type of
data requires to overcome them. As for i), we explicitly consider spatial autocor-
relation in the learning phase and, as for ii) we propose to identify anomalies in
the embedding space rather than in the original feature space, to be more robust
to the presence of noise in the data. For this purpose, we propose to leverage
the feature extraction capability of the model and perform anomaly detection
by analyzing the embedding bottleneck features of the stacked auto-encoder.
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In summary, the contributions of this paper are the following: i) we propose
a stacked auto-encoder architecture which incorporates a spatial encoding stage
in its architecture, to explicitly model spatial autocorrelation in geo-distributed
multi-variate sensor data; ii) we devise a distance-based anomaly detection tech-
nique that leverages the distance among data observations, represented according
to an embedding space learned by the stacked auto-encoder; iii) we evaluate the
proposed approach on real-world datasets related to the renewable energy field.

2 Background

Data anomalies can usually be classified in three categories: point, contextual,
and collective anomalies [9]. In this paper we address the detection of contextual
anomalies, where the context is represented by the spatial dimension of a data
observation [12, 16]. For instance, a contextual anomaly could be represented by
an abrupt temperature value measurement at one geographical location.

In general, the identification of contextual anomalies can be carried out with
supervised, semi-supervised or unsupervised machine learning approaches [9].
Although there are several machine learning based methods, unsupervised ones
are better suited for domains characterized by a scarce availability (or by the
total absence) of labeled data, which is the case in many real-world scenarios.

Among existing methods, it is worth mentioning One-Class SVM (OCSVM)
[15], that learns a separating hyperplane in a high-dimensional space [15]. Once
the model is learned, OCSVM can classify a new data observation as similar (i.e.,
normal) or different (i.e., anomaly) with respect to the training data distribution,
according to its position within the decision boundary. In this line of research,
OCSVM models have also been adopted in ensemble settings [1, 18].

Isolation Forests [13] exploit a combination of tree-based models, through
which calculate an isolation score for each data observation. Specifically, the
score of an observation is computed as the average path length from the root of
the tree to the node containing the single observation. A short path indicates
that an observation is easy to isolate from the others due to significantly different
attribute values compared to the training data points.

In this scenario, methods based on auto-encoders and stacked auto-encoders
[20] have demonstrated superior performance. This behavior is theoretically mo-
tivated by their ability to construct representations, with a low reconstruction
error, based on non-linear combinations of the input features [4].

Although auto-encoders have seen particular interest for anomaly detection
from images [20], in this work we adopt such models and investigate their ef-
fectiveness for the detection of abrupt changes in multivariate time-series data.
Moreover, we introduce a novel component in the architecture to explicitly model
spatial autocorrelation phenomena.

3 Method

The method proposed in this paper is able to analyze multi-variate sensor data
(related, for example, to temperature, wind speed, pressure, etc.) collected from
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multiple geo-distributed locations. Specifically, considering a discrete timeline
and a set of locations L, let xt,l be the vector of measurements at time t and
location l ∈ L. The multi-variate data coming from sensors can be represented
as an unbounded sequence (i.e., a stream) of sets:

D = 〈{x1,1, . . . , x1,|L|}, {x2,1, . . . , x2,|L|}, . . . , {xt,1, . . . , xt,|L|}〉

We learn a stacked auto-encoder using D as input data representation to sub-
sequently carry out the anomaly detection task. The adoption of stacked auto-
encoders is motivated by their ability to extract layer-wise representations, at in-
creasing levels of abstraction. In general, the first layer of a stacked auto-encoder
learns simple features (e.g., edges, in the image domain), whereas deeper layers
learn features at increasing levels of complexity and summarization (e.g., co-
occurring edges that form corners). This characteristic allows to model complex
properties of background data in the embedding space, that may in turn lead to
an increased ability to discriminate between normal and anomalous instances.

In the following subsection, we describe the proposed strategy to explicitly
consider spatial autocorrelation phenomena in the auto-encoder architecture.

3.1 Spatial encoding stage

The proposed auto-encoder architecture features a spatial encoding stage which
is based on LISA (Local Indicators of Spatial Autocorrelation)[2], that simulta-
neously exploits data available at every location.

In order to describe how the spatial encoding stage works, we introduce how
the computation of LISA is performed. The spatial neighborhood of the sensor
network is expressed as a matrix, and for each location and data observation at
a time point t, LISA is computed using such a matrix. Specifically, the first step
is to define a neighborhood matrix Λ ∈ R|L|×|L|, such that:

Λ[i, j] = 1− dist(li, lj)/maxDist (1)

where li ∈ L and lj ∈ L are two locations, dist(li, lj) is the spatial distance (in
kilometers) between the two locations li and lj , and maxDist is the maximum
pairwise spatial distance observed in the sensor network.

A subsequent step computes the deviation of each data feature with respect
to the mean, leveraging z-score normalization. Intuitively, in our approach we
are interested in identifying the contribution of the neighboring locations for each
feature observed at each time point. Therefore, given Dt = {xt,1, . . . , xt,|L|} ∈ D,
the subset of all data observations for all the locations at a specific time t, the

z-scores for a location l ∈ L are calculated as: z
(f)
t,l =

(
x
(f)
t,l −D

(f)
t

)
/σ

D
(f)
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,

where f is a generic feature measured by a sensor (that is, a generic element

of the vector xt,l); D
(f)
t represents the average value of the feature f in all the

locations; σ
D

(f)
t

represents the standard deviation of the feature f in all the

locations. Leveraging z
(f)
t,l , it is possible to compute LISA for the variable f of

the location li for time t (according to [2]) as follows:
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Fig. 1. A graphical representation of our spatially-aware auto-encoder architecture.

I
(f)
li,t

= z
(f)
t,li
·
∑

lj∈L,i6=j

Λ[i, j] · z(f)t,lj
(2)

Following the aforementioned process, for each time point t, the spatial encoding
stage extracts a new representation St as follows:

St = {[I(f1)l1,t
, . . . , I

(fn)
l1,t

], [I
(f1)
l2,t

, . . . , I
(fn)
l2,t

], . . . , [I
(f1)
|L|,t, . . . , I

(fn)
|L|,t]} (3)

3.2 Encoding and decoding stage

The subsequent encoding stages extract new representations with a lower dimen-
sionality than the input data, similarly to the typical auto-encoder architecture.
In our model, we perform two encoding stages after the spatial encoding stage
(see Figure 1), with 1/2 and 1/4 of the input features, respectively. The archi-
tecture is trained end-to-end leveraging historical data which represent normal
behavior conditions. We assume that historical data contains no anomalies (or a
negligible amount), and use the trained model for anomaly detection purposes.

Starting from the dataset D, the stacked auto-encoder aims at learning the
encoding function e : X → F and the decoding function d : F → X , such that:

〈e(·), d(·)〉 = argmin
〈e(·),d(·)〉

‖D − d(e(D))‖2, (4)

where X is the input space of D, and F is the learned embedding space.
The functions e(·) and d(·) should be parametric and differentiable according

to a distance function. Consequently, the parameters of the encoding and decod-
ing functions defined above are optimized by minimizing the reconstruction loss.
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3.3 Embedding-based anomaly detection

To detect anomalies, we propose a k-Nearest Neighbors approach that lever-
ages the encoded data representation. Once the auto-encoder is trained with the
available historical data, we compute the average Euclidean distance between
each data observation and its nearest k observations in the embedding space.
Coherently, when a new observation is available, we encode it in the embedding
space, and compute its average distance w.r.t. the nearest k observations. If the
distance is greater than a given threshold, then the observation is considered as
an anomaly. In this work, we do not adopt a manual threshold, but estimate it
from the data distribution. Specifically, we use [d + 3 · σ], where d is the aver-
age pairwise distance observed between each training data observation and its
nearest observations, while σ is the standard deviation of the observed distances.

Note that the identification of the k nearest neighbors in our method is based
on the Hybrid Spill Tree (HSP) [14], a distributed data structure (variant of
metric trees) for high-dimensional indexing, that allows to retrieve the k nearest
neighbors of an observation in O(log|D|).

4 Experiments

4.1 Datasets

The datasets considered in our experiment consist of weather variables (such as
temperature, humidity, etc.) monitored at hourly granularity by sensors placed
on renewable energy plants, located in different geographical areas. In particular,
we considered the following datasets analyzed also in previous studies [11]:

– PV Italy. The dataset consists of data collected every 15 minutes (from
2:00 AM to 8.00 PM, every day) by sensors located on 17 photovoltaic power
plants located in Italy. The time period spans from January 1st, 2012 to May
4th, 2014. More details about data preprocessing steps can be found in [6].

– Wind NREL. This dataset (www.nrel.gov/wind) was modeled using the
Weather Research & Forecasting model. Five plants with the highest produc-
tion have been selected, obtaining the time series of wind speed and produc-
tion observed every 10 minutes, for a time period of two years (from January
1st, 2005 to December 31st, 2006). Hourly aggregation was performed.

For both datasets, we consider the following features: latitude and longitude of
each plant; day and hour; altitude and azimuth; weather conditions, i.e., ambi-
ent temperature, irradiance, pressure, wind speed, wind bearing, humidity, dew
point, cloud cover, and a descriptive weather summary. Weather conditions are
either measured (training phase) or forecasted (detection phase). In particular,
all the weather data were extracted from Forecast.io, except for the expected
altitude and azimuth, that were extracted from SunPosition (www.susdesign.
com/sunposition), and the expected irradiance (PV Italy dataset only), that
was extracted from PVGIS (re.jrc.ec.europa.eu/pvg_tools/en/#MR).

For each dataset, we build the testing set by selecting all the instances (mea-
surements at hourly granularity, observed at all the plants) belonging to 10



Title Suppressed Due to Excessive Length 7

randomly selected days. We analyze the anomaly detection capabilities of the
method, considering three different training window sizes: 30, 60 and 90 days.
This means that, for each day in the testing set, we train the model using histor-
ical data belonging to 30, 60 or 90 days, respectively, preceding the considered
testing day, with the goal of identifying anomalies for all the measurements be-
longing to the considered day of the testing set. For evaluation purposes, anoma-
lies are artificially introduced by perturbating the correct attribute values. This
is done on 25% of instances on 50% of the features.

4.2 Competitor systems and experimental setup

In line with the discussion of existing works reported in Section 2, in our ex-
periments we considered, as possible competitors, the most suitable class of
approaches to address the task of interest in our study, that are mainly based
one-class classification. Indeed, they offer the flexibility to learn a model from an
initial (regular) data distribution and are able to flag data that significantly differ
from the learned distribution. In particular, we considered three state-of-the-art
competitor methods falling in this class, namely One-Class SVM (OCSVM)
[15], Isolation Forest [13], and an Auto-encoder architecture that bases the
detection of anomalies on the reconstruction error [3, 20]. These approaches are
widely adopted, and generally provide highly accurate detections.

Their parameters were set to the values suggested in their respective papers.
In particular, for One-Class SVM, we choose a Radial Basis Function (RBF) ker-
nel and select the best value for the γ parameter in the set γ ∈ {0.1, scale, auto}).
The auto configuration corresponds to γ = 1

n features , whereas the scale con-

figuration corresponds to γ = 1
n features·var(X) , where var(X) represents the

variance of the training data. For Isolation Forest, we set: the number of base
estimators in the ensemble n estimators ∈ {10, 25, 50}; the number of features
to draw at random for each base estimator equal to the number of the whole
set of features. For the auto-encoder, we followed the heuristics proposed by
[5]: we initially experimented with different configurations for learning rate
(negative powers of 10, starting from a default value of 0.01) and batch size
(powers of 2) using a 20% validation set. Preliminary results suggested that
the different configurations did not affect performance metrics significantly. For
this reason, the experiments were performed with the following parameters:
epochs=500, learning rate=0.0001, batch size=32. Moreover, we experimented
with two different values of its parameter p, i.e., p ∈ {1.5, 3} (if the reconstruc-
tion error deviates more than p · σ from the one observed on the training set,
the instance is marked as an anomaly).

As regards our method, we report the results with different values of k,
namely k ∈ {50, 100, 150}. Finally, in order to specifically evaluate the contribu-
tion provided by the spatial embedding component, we also report the results
obtained by a simplified version of the proposed architecture, that does not
exploit the spatial embedding step. We call this variant Without SE.

All the results were collected in terms of Precision, Recall and F-Score.
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4.3 Results and discussion

In Table 1 we report all the results obtained in our experiments. First, we can
observe that our approach generally obtains the best results among all the con-
sidered methods. Looking specifically at the results on PV Italy, we can observe
that the best F-Score results are obtained with a time window of 30 days. This
means that the kNN-based approach that we propose achieves optimal results
even with a limited view on historical data. Looking at Precision and Recall, it is
clear that our approach is sensitive to anomalies, but robust to false detections:
the results in terms of precision (∼98-99%) indicate that the false positive rate
is around 1-2%, while the Recall results indicate a good rate of detected anoma-
lies, i.e., around 75%. Such results are not obtained by competitor systems, that
show a significantly lower Precision (∼85% in the best case, obtained by the
Auto-encoder, σ = 1.5), and recall, especially in the case of Isolation Forest.

Looking at the simpler version of our method (Without SE), we can observe
comparable, but lower results than those achieved by the full variant of our
method. This behavior confirms that the proposed architecture, based on kNN
on the embedded instances, is generally effective and is further supported by the
spatial encoding step that takes into account spatial autocorrelation phenomena.

A closer look at the results obtained on the Wind NREL dataset reveals a
similar situation. In this case, we can only observe one case (i.e., window size =
90 days and k = 150) in which the best results are achieved by the variant of our
method that does not exploit the spatial embedding component. However, the
difference with the full version of our method is negligible, and it may be possibly
due to the fact that, in this dataset, less features are correlated to the spatial
dimension, with respect to the photovoltaic power plants in PV Italy (see, e.g.,
the irradiance feature). Nevertheless, a contribution of the spatial encoding step
can still be observed when the time window is limited to 30 or 60 days.

Focusing on the best F-score results achieved by the considered methods,
measured over all the values of their parameters, we can easily observe that
the proposed method always outperforms all the other competitors. We can also
observe a slightly higher Recall exhibited by the auto-encoder, but at the price of
a significantly lower Precision. However, our method generally leads to a 7%-9%
improvement in terms of F-score in all the cases with respect to the auto-encoder.

5 Conclusion

In this paper we presented a novel anomaly detection method based on an auto-
encoder architecture that features a spatial encoding stage to model spatial auto-
correlation. The proposed architecture is unsupervised, and the model is trained
using historical data. The anomaly detection task is carried out by comparing the
projection of new observations in the embedding space to their nearest neighbors.
This strategy allows us to detect anomalies using a distance-based approach that
exploits a threshold automatically estimated from training embedded data.

The experimental evaluation performed on two datasets, related to real-world
sensor networks of power plants, showed significant improvements in terms of
F-Score, that reaches 9.18% compared to auto-encoders based on reconstruction
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Table 1. Anomaly detection results obtained considering varying training sliding win-
dow sizes. Best F-Score results for each Window size configuration are marked in bold.

PV Italy 30 days 60 days 90 days
Our Method Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score

k=50 0.9853 0.7433 0.8472 0.9801 0.7437 0.8444 0.9764 0.7412 0.8419
k=100 0.9896 0.7452 0.8500 0.9853 0.7455 0.8478 0.9787 0.7430 0.8436
k=150 0.9925 0.7464 0.8519 0.9871 0.7458 0.8488 0.9814 0.7433 0.8451

Without SE Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
k=50 0.9248 0.7729 0.8250 0.9161 0.7948 0.8344 0.9118 0.7965 0.8337

k=100 0.9517 0.7528 0.8261 0.9323 0.7687 0.8260 0.9228 0.7711 0.8236
k=150 0.9651 0.7427 0.8277 0.9451 0.7553 0.8246 0.9349 0.7600 0.8229

Auto-encoder Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
p = 1.5 0.8516 0.8179 0.7836 0.8502 0.8145 0.7774 0.8467 0.8132 0.7771
p = 3 0.7880 0.7703 0.7055 0.7877 0.7698 0.7049 0.7892 0.7722 0.7087

OCSVM Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
0.7880 0.7386 0.7305 0.7880 0.7386 0.7305 0.7880 0.7386 0.7305

Isolation Forest Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
n estimators=10 0.6277 0.4409 0.4033 0.6277 0.4409 0.4033 0.6277 0.4409 0.4033
n estimators=25 0.6799 0.5092 0.5007 0.6799 0.5092 0.5007 0.6799 0.5092 0.5007
n estimators=50 0.6879 0.5406 0.5450 0.6879 0.5406 0.5450 0.6879 0.5406 0.5450

Wind NREL 30 days 60 days 90 days
Our Method Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score

k=50 0.9871 0.7558 0.8523 0.9726 0.7675 0.8490 0.9636 0.7675 0.8453
k=100 0.9992 0.7508 0.8569 0.9887 0.7567 0.8530 0.9837 0.7533 0.8494
k=150 0.9992 0.7508 0.8569 0.9938 0.7542 0.8553 0.9915 0.7533 0.8534

Without SE Prec Recall F-Score Prec Recall F-Score Prec Recall F-Score
k=50 0.9768 0.7586 0.8478 0.9585 0.7664 0.8421 0.9590 0.7700 0.8439

k=100 0.9930 0.7547 0.8548 0.9781 0.7559 0.8474 0.9772 0.7647 0.8503
k=150 0.9970 0.7526 0.8564 0.9874 0.7529 0.8511 0.9884 0.7581 0.8537

Auto-encoder Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
p = 1.5 0.8371 0.8344 0.7907 0.8704 0.8408 0.7997 0.8652 0.8384 0.7971
p = 3 0.7159 0.7880 0.7068 0.7164 0.7888 0.7085 0.6924 0.7888 0.7083

OCSVM Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
0.8341 0.8040 0.8050 0.8341 0.8040 0.8050 0.8341 0.8040 0.8050

Isolation Forest Prec Rec F-Score Prec Rec F-Score Prec Rec F-Score
n estimators=10 0.7045 0.3792 0.3198 0.7045 0.3792 0.3198 0.7045 0.3792 0.3198
n estimators=25 0.8076 0.4128 0.3585 0.8076 0.4128 0.3585 0.8076 0.4128 0.3585
n estimators=50 0.8181 0.4272 0.3729 0.8181 0.4272 0.3729 0.8181 0.4272 0.3729

error. A direct comparison with a variant of the proposed method, that does not
exploit the spatial encoding component, also revealed the positive contribution
coming from the explicit consideration of the spatial information.

As future work we will investigate other approaches to model spatio-temporal
autocorrelation, as part of the neural network architecture. Moreover, we will
conduct an extensive experimental evaluation involving datasets related to other
domains, and affected by different amounts and types of anomalies.
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